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ABSTRACT

This report is a comparative study of the spatial filters pro-
posed for detecting stationary or slow-moving point targets. The
filters are characterized by their probability of detection against a)
the probability of false alarm, b) the strength or contrast of the
target for a given false—alarm rate or c) the noise for a given false-
alarm rate and a given strength or contrast. .

RESUME

Ce rapport consiste en une &tude comparative des dif férents
filtres spatiaux qui sont proposés pour la détection de cibles ponc-
tuelles stationnaires ou quasi stationnaires. Les filtres ont été
caractérisés par leur probabilité de détection en fonction: a) de la
probabilité d'une fausse alarme, b) de 1'intensit& ou du contraste de
la cible pour une probabilité de fausse alarme donn&e ou c) du bruit

pour une probabilité de fausse alarme et une intensité ou un contraste
donnés.
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1.0 INTRODUCTION

Spatial filters are widely used for target~detection applica-
tions. Hence, during the past few years we have developed and tested a
certain number of nonlinear spatial filters genericaliy referred to as
double-gated filters. Several other nonlinear and/or linear spatial
filters have been developed for the same purpose by Defence Research
Establishment Valcartier (DREV) or by private firms under contract from
DREV (Refs. 1-2).

Given the large number of spatial filters that are discussed in
the scientific literature, there is undoubtedly a need for some sort of
characterization procedure that would allow one to assess the ability
of a particular spatial filter to detect targets. We will limit our-
selves here to the detection of point targets in cluttered IR back-
grounds. This shall be construed as meaning that the characterization

procedure to be developed is not applicable to the detection of

extended targets and that the results obtained for point targets cannot

be generalized for extended or spread targets. We indeed feel that
point targets and extended targets should be treated separately. It is
far from obvious that the same spatial filter can be equally good both
for point targets and for extended targets. Most spatial filters
designed to detect a point target are based on the principle that such
a target is nothing but an intensity surge, and as such is character-
ized by high spatial-frequency contents as opposed to the background,
which mainly consists of low spatial frequencies. The rationale is
that by filtering out the low-frequency components of an image, one
should enhance the target-to-clutter ratio and make the target easier
to isolate from the background. An extended target, however, contains
both high spatial frequencies (the edges of the target) and low spatial
frequencies, 1.e. the interior of the target. In consequence, by
filtering out the low frequencies, one ends up with only the edges or

the outline of the extended target, and the processing needed to iso-

n.:.v.u..n,‘t. Ay .#"‘J-"‘J“ ""’-(’ QANAN

L n’
l“.ﬁ .. ".‘ "h' h‘ L3 . Y "‘ 00N .l‘ M ':‘-'l ‘ ll n.l :‘l WV n.l. DU Mt ~($ .'ﬂl

LN w*a‘c, ‘r’r‘ R SrdeACALS J,'\#“f.f Lot

VJ% e




L ata o & aba g il o aah bl aide and ofl obd sy o B AR sl adh a¥A aod acrs - abhabd ol abdh-amil aRk-abAcads-nid - ath i -nid adld ol o fhAhh o nd - atbh- o A S RESAILAY L hd s et adb A AR S R R |

)
s
UNCLASSIFIED
R 2
3 ;
‘ég late it is radically different from that needed to isolate a point
L target (a simple threshold) and is not amenable to the same characteri-
”ix zation procedure.
G’i In this report, we define a point target as a target whose image
s is fully contained in a single picture element, and an extended target
! : as one whose image overlaps several picture elements or pixels. How-
::33 ever, one should be aware that as the target moves, it is bound to be
E&‘j seen by more than one pixel, e.g. when it crosses the boundary between
e two pixels. This is because a point target has a finite extent and is
:f?; not a point in the geometrical sense. Here we neglect this aspect of
¢ ff the problem. 1In other words, we assume that the target is always
:ﬁg sitting on a single pixel and that 1f it moves, it does so in steps of
b an integral number of pixels. This is not really a restriction as far
f:, as the characterization procedure is concerned. Assume that the point
):ﬂ target in question is square and that it fully fills a pixel in size.
:Eﬁ Then, as this target moves, part of it will necessarily be seen by more
s than one pixel. In fact, it will be seen by two pixels (intensity of
R the target split among two pixels) if it moves horizontally or verti-
%;: cally, and by four pixels if it moves at a certain angle. This means
j’i that the proportion of the target seen by a given pixel will vary from
v 1 to 0.25 as it moves. This also means, assuming we use a single- 1
4ﬂ intensity threshold to detect the target, that it might not be detecta-
;;% ble in some portions of its trajectory even though the target maneuvers
A:?: against a uniform background.
A
N>, In Chapter 2.0 we fully describe the proposed characterization
i¢§5 methodology. For instance, we explain what we mean by a probability of
'ﬁi a false alarm or a probability of a true alarm and how we proceed to
rl calculate them. The next chapter briefly describes the spatial filters
F;? proposed to detect slow or stationary targets. Finally, Chapter 4.0
| > presents and discusses the characterization results obtained.
G
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A This work was performed at DREV between April and December 1985
under PCN 33J05, Signal Processing - SBIRS.

2.0 CHARACTERIZATION METHODOLOGY

2.1 Baseline Surveillance System

g o

f* Figure 1 illustrates the method of operation of a baseline sur-
,: velllance system consisting of (1) an IR sensor, (2) a spatial filter,
and (3) a threshold device. The image gathered by the IR sensor ‘s
"j first filtered using, as in the example here, the following 3 x 3,
l? linear high-pass spatial filter:
. +0.25 -0.50 +0.25
\J -0.50  +1.00  -0.50 [1]
04 +0.25  -0.50  +0.25
'
The image 1s then thresholded according to a single intensity thresh-
A:: old. The resulting image consists of a number of scattered white spots
" that mark the location of those pixels in the original image whose
ai intensity exceeds the threshold. We will refer here to the threshold
] exceedances as alarms and distinguish between true alarms, i.e. those
’ﬁ threshold exceedances that correspond to real targets, and false
.(: alarms, i.e. those that arise from background clutter. We will use the
g: word "detections” to designate the true alarms.
N The above-mentioned filtering and thresholding operations
?; constitute only the preliminary phase, what I.W. Kay (Ref. 3) calls the
j‘k detection phase, of the decision-making process aimed at discriminating

between targets and backgirounds within the sensor's field of search.

Tracking algorithms, which distinguish between the resulting true and
false alarms by means of their supposedly different characteristics
observed over time, make the final decision whether or not to declare

- that a target is present. This second phase 1s referred to as the
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FIGURE 1 - This figure illustrates the method of operation of a

baseline surveillance system consisting of: (1) an IR
sensor, (2) a high—-pass spatial filter, and (3) a threshold
device. The sequence on the left-hand side depicts the
output of the system in the absence of targets, whereas the
sequence on the right-hand side shows what the output might
look like when targets are present. The original image was
collected by the Netherlands IRSCAN system in the 8-12 um
band. This IR sensor consists of a vertical array of 120
cadmium mercury telluride detectors. They produce a com-
plete image of 220 x 120 pixels over the horizontal scanning
of a scene.
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declaration phase in Ref. 3. The scope of this report is restricted to
the detection phase and its primary objective is to formulate a method-
ology for assessing the ability of a particular linear or nonlinear

spatial filter to detect point targets.

The detection phase is of the utmost importance because it
should discard as much background as possible without throwing away a
valid target. The critical nature of this phase is an accepted fact as
noted in image-processing literature, where the term “"segmentation” is
used to designate it. On the one hand, the detection phase sets a
ceiling on the probability of target detection, for a target mistakenly
rejected at this step is lost for good. On the other hand, as pointed
out in Ref. 3, tracking algorithms used in the subsequent declaration
phase will work only if, initially, the expected number of false alarms
is below a certain critical value. Moreover, the effectiveness of a
tracking algorithm is extremely sensitive to errors unless the a priori
false~alarm probability can be reduced by the signal-processing
techniques peculiar to the detection phase (Ref. 3).

It is common for a surveillance system to be used under condi-
tions where most of the time there are no targets at all within the
sensor's field of search. Indeed, we expect a surveillance system to
give the alert only in rare and exceptional occasions. This means that
the vast majority of the alarms generated by the detection phase are
false ones. On the other hand, as mentioned in the preceding para-
graph, the results of the declaration phase depend heavily on the
number of false alarms generated by the detection phase. Thus, it is
important to set a limit on the number of false alarms. This {is
equivalent to prescribing a constant false alarm rate (CFAR). The
number of alarms generated by the baseline surveillance system of
Fig. 1 can be easily controlled by varying the level of the threshold.
So, independent of the particular gpatial filter used, it is always
possible to select the threshold in such a way that the number of

alarms will equal a preset number. Under these conditions, we
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‘*3 obviously cannot characterize a spatial filter by its ability to reduce
s the dispersion of the gray levels of the original image, as is some-
|,& times done. Instead, given the CFAR condition, the problem of charac-
W
‘}} terizing a particular spatial filter can be stated as follows. Among
gtj all the possible spatial filters used for detecting the presence of a
gt point target with a given false-alarm probability, find the filter for
e which the probability of detection is a maximum. This is the well-
K
:$§ known Neyman-Pearson criterion of detection theory (Ref. 4).
)
{
o 2.2 Probability of a False Alarm

,,
;J; An image filtered with the aid of a high-pass filter contains
i;ﬁ both positive and negative intensities. This implies that the thresh-
.
S old level can either be negative, to detect targets colder than the
el background; positive, to detect targets hotter than the background; or
K 2 bipolar, to detect both types of targets. Let n(t) be the number of
nel alarms generated by a particular spatial filter, as a function of

L threshold level t, and let N be the size (total number of pixels) of

. the filtered image (not necessarily the same size as the original
ntf image, due to edge effects). Then, the probability of a false alarm,
’}? Pf(t), is given by:

e
4 »
8 Pf(t-) = n(t-) / N = Ff(t-) [2]

o
').::
N for a negative threshold, by:
g

. Pf(t+) = 1 - n(t+) / N = 1 = Ff(t+) [3]
I
b _'
3N for a positive threshold, and by:
b

3 Pf(t-, t+) = Pf(t-) + Pf(t+) [4]

¥

)

S

o

for a bipolar threshold.
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In the above expressions Pf(t-) is the cumulative distribution function
(c.d.f.) of the filtered image. Note that, in the case of the bipolar
threshold, 1f t+' = t then Pf(t-, t+) = Pf(t), 1.e. the c.d.f

t-

of the absolute value of the filtered image. Given a required Pf(t)
value, the CFAR threshold can be easily determined by calculating the
percentile that divides the range of filtered gray-level values into

the appropriate proportions.

In Fig. 1, the filtered gray-level values range from =93 to +93.
However, for display purposes, the filtered image was normalized
between ~10 and +10. That is, full black corresponds to filtered
intensities less than or equal to =10, whereas full white corresponds
to filtered intensities greater than or equal to +10. The filtered
image was thresholded at the 4.71 value in both cases (with and without
targets). This particular value is the 99th percentile of the filtered
image. In other words, the probability of a false alarm is 0.0l. The
original image consists of 120 rows of 220 pixels, whereas there are
only 118 rows of 218 pixels in the filtered image. This is because the
spatial filter is restricted within the confines of the image and under
these conditions it is blind to the pixels sitting on the perimeter of
the original image.

2.3 Probability of a True Alarm

We will now address the problem of determining the probability
of a true alarm, i.e. the probability of detecting a target that sud-
denly appears somewhere within the sensor's field of search. To this

end, we will make a few assumptions.

a) Firstly, we will assume that the IR sensor is operated at
its 1imit of resolution and that, in consequence, the target
is not larger than the field of view (IFOV) of an individual
pixel. 1In other words, as already mentioned, we assume that

the target of interest is a point target.
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3&:: b) Secondly, we will assume that in order to establish a con-

tact with a point target, it must appear on a single pixel.

ﬁ' In practice, of course, a point target may at times be
;.:§1 sensed by more than one pixel. 1In fact, if there is no gap
a* between the individual IFOVs, the intensity of a point
w5y target may be shared by up to four pixels, which considera-
OTE bly reduces its detectability. This implies that we have to
.‘¢: accept the fact that, with time, there might be breaks in
‘;;: the detection log, even though the target is maneuvering
against a perfectly uniform background.
i
: ': c) Finally, we will follow the example of Ref. 3 and assume
§ { that the surveillance system is deliberately designed to
At announce that a true alarm has occurred if, and only if, the
-, target coincides with the central pixel of the spatial
:i;i filter. Otherwise, the target will be regarded as absent.
i?ﬁz The reason for this last assumption will become more obvious
o as we go along.
g
5:; To determine the probability of a true alarm we will have to
&}* simulate, for lack of sufficient experimental data, the change that the
%sb image gathered by an IR sensor undergoes due to the presence of a point
;;3 target within its field of search. Let us consider the IR cloud
E:C}' picture of Fig. 2. We prefer this picture here, for illustration pur-
if&i poses, to the one of Fig. 1 because the latter contains large, satu-
N rated areas. Assume that a point target suddenly crosses the sensor's
e field of search. Then as the target passes through the individual
s:i fields of view, the intensity of the corresponding pixels fluctuates.
'i;j The amplitude of this fluctuation essentially depends on the intensity
T and the size of the target. However, it is not important here to know
;ﬁav the exact mechanism behind this phenomenon. We will only retain that
zig the intensity of a particular pixel is not the same with and without a
N
s
s
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MINIMUM  MAXIMUM MEAN STD DEV
by 3. 237.0 150, ¢

(% .
e

45.8

FIGURE 2 - The IR digital cloud picture, used to describe the proposed
i’ method of characterization of spatial filters, and its

‘25 histogram. The horizontal axis of the graph ranges from 0

#i to 237, i.e. from the minimum gray-level value to the

R maximum gray-level value found in the plicture, whereas the

Lo vertical axis ranges from O to the value of the mode of the
histogram.
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f%g target in its IFOV and, hence, we will attempt to characterize a given

a spatial filter for a broad range of intensity variations, in a variety

;Eﬁ of scenarios.
e
ﬁhi The following four target—insertion scenarios cover many possi-
_ bilities:
B
ég* R(x, y) = K1 (5]
e

R(x, y) = M2(x, y) + K2 x Mi(x, y) [6]
W9y
$'% R(x, y) = I(x, y) + K3 [7]
i

R(x, y) = I(x, y) + K& x I(x, y) [8]
S
gy
a ﬁ where R(x, y) is the {ntensity resulting from the presence of a point
S; target within the IFOV of the pixel at spatial coordinate (x, y); K1,

K2, K3 and K4 are constants; I(x, y) is the intensity of the back-
:xt ground, i.e. of the pixel in the absence of a target, and Mi(x, y) is
isﬁ a local mean calculated over a neighborhood of the same size as the
-a:} spatial filter but excluding the central pixel. The first scenario
corresponds to a point target whose size is comparable to the IFOV,

35‘ with the result that the intensity of the target is substituted for the
a§~ intensity of the background. For performance evaluation purposes,
:::;;? constant Kl can be expressed in terms of the background mean: k'Mg;

) background standard deviation: k''Sg; or both, Mg + k'''Sg. It is
;6' worthy of note that in this scenario the target can be either colder or
i“s hotter than the immediate surroundings depending on the value of K1 and
:'ﬁ where the target 1s inserted. This means that to detect it one must
s use a bipolar threshold. Otherwise, the characterization results are
. meaningless. The other three scenarios can be associated with a point
é,i target smaller than the IFQOV so that some of the background intensity
%:2 combines with that of the target and must be accounted for. Equation 6

. can be rearranged as follows:
i
s
My

aﬂ‘
','
20
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K2 = R(x, y) = M&(x, y) [9]
Mi(x, y)

that is, K2 can be assimilated to local contrast. In the case of [8],
the same rearrangement will show that K4 is a signal-to-noise ratio.
Constant K3, like K1, can be expressed in terms of Mg, Sg or both. The
point targets simulated with the aid of [6], [7] or [8] are either
colder (negative K's) or hotter (positive K's) than the background, and
must be detected accordingly so as not to bias the characterization

results.

The graph in Fig. 2 1s the histogram of the underlying cloud
picture and an estimate of the probability density function (p.d.f.) of
the background pixels. The horizontal axis of the graph ranges from O
to 237, i.e. from the minimum to the maximum gray level present in the
plcture, whereas the vertical axis ranges from O to the value of the
mode of the histogram. Both scales are linear. The very same histo-
gram 1s repeatedly plotted on a semilogarithmic scale in Fig. 3 as a
solid gray plot. The superimposed white curves 1in the same figure are
the p.d.f. of the simulated point targets. The labels A, B, C, and D
correspond to the scenarios [5], [6], [7] and [8] respectively. These
curves were obtained by first inserting, according to the related
scenario, a point target in each and every pixel of the picture of Fig.
2, and then calculating the histogram of the resulting collection of
target—in-pixel intensities. However, as far as scenarios [5] and [7]
are concerned, this procedure is not really necessary since the outcome
is obvious. 1In the first case, the histogram is nothing but a spike
(Fig. 3a) whose position on the horizontal axis is governed by constant
Kl. In the case of [7], tﬁe target-in-pixel histogram is a true
replica of the background histogram but is shifted to the right or to
the left, according to the sign of K3, by an amount equal to the
absolute value of K3 (Fig. 3c¢). The other two histograms (Figs. 3b and
d), although distinct, exhibit the same general trend: they both

stretch the background histogram in one direction.
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FIGURE 3 - The repeated gray curve is the histogram of the cloud back-
ground of Fig. 2 plotted on a semilogarithmic scale, whereas
the superimposed white curves are the histograms of the
Inserted point targets corresponding to the four target-
insertion scenarios described in Section 2.3.
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Figure 4 shows the spreading of the background and target—-in-
pixel intensities after filtering with the spatial filter defined by
[1]. In other words, Figs. 3 and 4 display the same quantities before
and after filtering. The horizontal axis of all the plots of Fig. 4
ranges from -100 to +100. We note that the histogram of the filtered
cloud picture is quite narrow, with a standard deviation of 2.27 com
pared to a standard deviation of 45.02 for the original, unfiltered
picture. The histograms of the target~in-pixel intensities are much
broader, except for the one in Fig. 4c. Since the filter used is
linear, the target-in-pixel histogram associated with [7], as in
Fig 3c, is simply a shifted version of the background histogram. The
scenario that produces the broadest histogram is the one defined by [5]
(Fig. 4a). 1t stretches out from -35 to 202.5 which explains the odd
behavior of the curve at the positive end of the horizontal axis. On
the other hand, the distinct nature of scenarios [6] and [8] stands out

more clearly here (Figs. 4b and d) than in the case of Fig. 3.

As mentioned in Section 2.2, the histogram of a filtered image
provides an estimate of the p.d.f. of a false alarm. In the same way,
the histogram of the filtered target-in-pixel intensities provides an
estimate of the p.d.f. of a true alarm for a given background scene.
The probability per se of a true alarm or of a false one is obtained by
cunulating their p.d.f. backwards. The resulting curves, Fig. 5, are

never—-increasing functions of the threshold level.

2.4 Filter Operating Characteristic

We can use the plots of Fig. 5 to determine the probability of
detection (probability of a true alarm) and the probability of a false
alarm assoclated with a particular threshold setting or, more realisti-
cally, to determine the probability of detection we can expect when we

have to compromise with a certain false—-alarm probability. Another way
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FIGURE 4 - This figure is the counterpart of Fig. 3. It depicts the
histograms of the cloud background and of the inserted point
targets after filtering, whereas Fig. 3 displays the same
quantities, but before filtering.
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FIGURE 5 - By cumulating backwards the histogram of the cloud back-
ground and the histograms of the inserted polint targets of
Fig. 4, one obtains the probability of a false alarm
(repeated gray curve), and the probability of detection
(white curves) as a function of the threshold level. As in
the case of Figs. 3 and 4, the letters A, B, C and D corre-
spond to the four target—insertion scenarios described in
Section 2.3,
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}ﬁ%
:g%f of presenting these quantities is to plot the probability of detection
versus the probability of a false alarm, for various target-contrast
.isy values (Fig. 6). Van Trees (Ref. 4) refers to such plots as the
;ﬁé receiver operating characteristic. Here the expression filter oper-
’RE: ating characteristic is probably more appropriate. Another equivalent
representation of these quantities consists in plotting the detection
5?\ probability agalnst target-contrast values, for a few selected false-
;t: alarm probabilities (Fig. 7). This last rearrangement of the data is
SS; the one we prefer for filter-characterization purposes. The false-
alarm probability values selected are 0.001, 0.01, and 0.1. Given the
i&: size of the images considered here and the fact that we are dealing
A.{] with single frames, it would not be realistic to select a probability
23;: of false alarm smaller than 0.00l. On the other hand, since what we
e eventually want is a surveillance system having a high detection proba-
#f bility coupled with a low false-alarm rate, it is of no use to consider
:;f false-alarm probability values greater than O0.1.
>
.,
Figure 7 shows that for a target—-contrast value of 0.09 the
ﬁ‘, detection probability 1is close to one, whatever the probability of a
g: false alarm. In the presence of a degrading factor such as noise, the
:;Q; performance of a particular filter is bound to decline. To assess 1its
performance under such conditions one can calculate, for a given
iy target~contrast value, say 0.09, the corresponding detection probabili-
B ty for increasing amounts of simulated noise. The resulting curves are
%ﬁ% shown in Fig. 8. The additive, uncorrelated Gaussian noise was derived
v from a pseudo-random number generator. The noise had a zero-mean value
- and a standard deviation given by Nf x Sg, where Nf is the noise factor
'5; and Sg the standard deviation of the whole image.
oL The plots of Figs. 7 and 8 can be reduced to a single number, a
“‘j kind of figure of merit, for easier filter characterization and com-
' % parison. This number is referred to as the Minimum Detectable Contrast
s
o
%
=

Q“‘::
;:‘*# ) .r "}"'J‘.- .a")-".'e"a“r e '.)-“.-'.r:'_f NS 4;,-; 'ﬁr(,‘
""5 ' iy

.; J ,"':n
by -‘v'n'a ey l;.m "{' uj‘ W .v'.’..

N {gﬂ.ﬁ

LIy ATy “



Py

il i et

ATa sz

.
h
.

Sl

i d

FIGURE 6 -

UNCLASSIFIED
17

FILTER OFERATIHG CHARACTERISTIC

« 23 =]
FALSE-ALARM PROB.

In Fig. 5, the probability of a false alarm and the proba-
bility of detection are each plotted against the threshold
level for a particular value of the parameter characterizing
a glven target-insertion scenario. Another, more useful way
of presenting these quantities is to plot directly the
probability of detection versus the probability of a false
alarm. This is what we have done here for the case of the
target—insertion scenario described by [6] for the following
values of K2: 0.01, 0.02 and 0.04.
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TARGET CONTRAST

nocd FIGURE 7 ~ This figure is a variant of Fig. 6 where the probability of

TN detection is plotted against the characteristic parameter of

the target—insertion scenario for a few selected values of

' the probability of a false alarm, namely 0.001, 0.0l and
0.1.
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FALSE-ALARM FROE.

.2
NOISE FACTOR

FIGURE 8 - Behavior of the detection probability as more and more

uncorrelated Gaussian noise is added to the system. The
target—insertion scenario here is the same as the one used
to generate Fig. 7, with the value of K2 set at 0.09. The
noise factor is the standard deviation of the noise divided
by the standard deviation of the original image. The values
of the detection probability at zero noise factor (Fig. 8)
and at 0.09 target contrast (Fig. 7) are the same. Hence,
the plots of Figs. 7 and 8 could be joined end to end.
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in the case of Fig. 7, and as the Maximum Tolerable Noise in the case
of Fig. 8. Both are simply the target—contrast value and the noise-
factor value, corresponding to a detection probability of 50X.

2.5 Implementation

Figure 9 diagrammatically describes how the characterization
procedure expounded in the previous sections has been implemented.
This figure is largely self-explanatory. First, a moving window
extracts an image sample having the same dimensions as the filter
point-spread function (or the filter—defining equation in the case of a
nonlinear filter). A point target is then added to the center pixel
according to one of the scenarios defined in Section 2.3. Correlated
or uncorrelated Gaussian noise is added next if the intent is to evalu-
ate the performance of the filter in the presence of noise. Otherwise,
this step 1s merely bypassed. The last operation is the filtering
operation that simply consists (in the case of a linear filter) in
multiplying the elements of the point—spread function by the corre-
sponding elements of the modified moving window, and then in adding all
these products together to end up with a single number (here 47.75) for

each location of the moving window.

3.0 SPATIAL FILTERS EVALUATED

Some of the spatial filters proposed to detect slow or station-

ary targets are the:

a) 3 x 3-element, 4-neighbor Laplacian filter (Fl)

This high-pass, linear spatial filter is the discre.e
conterpart of the analog Laplacian operator, i.e. of a

second-order, two—dimensional derivative. 1Its point-spread

function is given by:
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175 163 178
187 220 170
169 169 164 166 166

TARGET RDDED

-90.50 +1.00 -0.50

+0.25 -0.50 +0.25

SPATIAL FILTER

FIGURE & - This figure {s largely self-explanatory.

It describes the

wiy the characterization procedure was i{mplemented.
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‘a! 0.00  -0.25 0.00 :
-0.25  +1.00  -0.25 [10]
TN 0.00  =0.25 0.00
“:' L]
E:% \ b) 3 x 3-element, 8-neighbor Laplacian filter (F2)
)
;?“' This filter is an alternative Laplacian one based on a
;_ N different neighborhood consisting of 8 horizontal, vertical,
;',I. and diagonal neighbors weighted as follows:
BOR M
o~ +0.25  -0.50  +0.25
po -0.50  +1.00  ~-0.50 [11]
N +0.25  =0.50  +0.25
¥ \'
:l ¢c) 5 x 5-element Wiener filter (F3)
o
‘: 0.0012 0.0195 0.0450 0.0196 0.0012
0.0195 -0.0304 -0.3049 -0.0304 0.0165
\3 0.0450  -0.3049 1.0000  =0.3049  0.0450 [12]
< 0.0195  -0.0304  -0.3049  =0.0304  0.0195
a
.;,‘:; 0.0012 0.0195 0.0450 0.0195  0.0012
~,l -
-",' d) 9 x 9-element Wiener filter (F4)
i
(v 7
(il
;ff' 0.0017 -0.0057 0.0091 -0.0314 0.0944 -0.0314 0.0091 -0.0057 0.0017

-0.0057 0.0073 -0.0188 0.0520 -0.1599 0.0520 -0.0188 0.0073 -0.0057

0.0092 -0.0188 0.0372 -0.1125 0.2954 =-0.1125 0.0372 -0.0188 0.0092
~0.0314 0.0520 -0.1125 0.2810 -0.5927 0.2810 =-0.1125 0.0520 -0.0314

0.0944 -0.1599 0.2954 -0.5927 1.0000 -0.5927 0.2954 =-0.1599 0.0944 [13]
-0.0314 0.0520 =-0.1125 0.2810 =-0.5927 0.2810 =0.1125 0.0520 -0.0314

0.0092 -0.0188 0.0372 -0.1125 0.2954 -0.1125 0.0372 -0.0188 0.0092
-0.0057 0.0073 -0.0188 0.0520 -0.1599 0.0520 -0.0188 0.0073 -0.0057

0.0017 -0.0057 0.0091 -0.0314 -0.0314 =-0.0314 0.0091 -0.0057 0.0017
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& Filters F3 and F4 are different least-mean-square optimal

filters. The formulation of the optimal filtering problem

s requires a knowledge of the target and the background

2: models. Here, we assume that we have to deal with a point

$ et

ﬂn target embedded respectively in a benign (F3) and in a harsh

background (F4). The power spectral density of the back-
' ground is assumed to be an expomential, the exponent of
which determines the harshness of the background. These
;h particular Wiener filters were proposed by E. Lithopoulos of
Spar Aerospace Limited.

¥
) e) 3 x 3-element submedian filter (F5)

B
W
f) 5 x 5-element submedian filter (F6)
32
;- A one-dimensional median filter is defined by an odd-length
»g window L = 2*1 + 1 elements long. To derive the output
. sample g(1i), the window i{s centered on the input sample x(1i)
f and all the samples within the window are ranked according
) to their amplitude. The output, y(i), is selected to be the
3. (1 + 1)-ranked (i.e. the median) input sample.
': The median operator preserves coustant backgrounds, slopes
;: and edges. It also suppresses isolated pulses shorter than
;: or equal to 1 pixel. By performing a simple subtraction of
the median input, x(i), from the median output, y(i), we
- derive a dual operator called the submedian. Unlike the
:z median filter, the L-element long, submedian filter suppres-
2 ses constant backgrounds, slopes and edges, and preserves
- pulses which are less than or equal to 1 element long.
s
K “
;
4
Ry

? - AT TRV LY N L RN SN . - = A P U, et - A
'fn * i v B LA iy AR f\’#*'i\’ ALY *.'x"x‘nix’ﬁ*x‘x‘n'- DRSNS 5y
SN <1“| n."a s, 1% ; - " R R CC R L O RNy \‘\_ §
RSONORDROALE }A O A ! RGeS ooy et CONNAGY



UNCLASSIFIED
24 !

For the present two-dimensional F5 and F6 filters, we use

B L

two different submedian operators. Ome is 3 elements long

(F5) and the other is 5 elements long (F6). The operator 1is

ol e,

applied in four directions in the following sequence:

413
2 % 2
314

Ty
o Sl e

Specifically, the one-dimensional submedian operator is

first applied in the north-south (1) direction. The

-
™’

resulting intermediate matrix is then processed by the sub-

-
P e

median operator in the east-west (2) direction. The proce-

- -

dure is then repeated in the southwest-northeast (3) and the

northwest=-southeast (4) directions.

The performance of the two-dimensional submedian operator

: .,'.4/“"‘

ey

depends on the window size and the separability of the

v operator. Simulations indicate that the 3 x 3-element
operator performs best for point targets. However, in the
case of leakage of the target to neighboring elements,
significant target attenuation can result. For this reason,
K a window 5 elements long 1is probably better for extracting

K extended targets.

g) 5 x 5-element double-gated filter (F7)

]

s This nonlinear filter is fully documented in classified DREV

S reports where it is used to detect extended vehicle targets

: in IR imagery. The particular form of this filter, proposed
to detect slow or stationary targets, can be implemented as

L follows. Each point in the input image is surrounded by a

-
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Snﬁﬁ frame one pixel thick, and 5 pixels wide. The mean, Mf, and
the standard deviation, Sf, of the intensity of the pixels
ys
2%5 in the frame are then computed and these quantities are used
T
03 b to shift and scale the intensity (A) of the center element
ety
s of the 5 x 5 window, as follows:
,\ Wi
e A' = (A - ME) / SE [14]
l‘ 'b\«
: “\l,‘r'.")
;r;) Figure 10 illustrates the working principle of a double-
gated filter.
e
R
%‘: Another filter proposed to detect slow or stationary targets
fkﬂc‘ is the Sobel edge detector. This filter is to be
LN XY
implemented in two stages. The first stage is the
{ ) generation of two intermediate data matrices from the
8 (]
,{SE original image by using the two Sobel convolution operators,
250 S1 and S2, defined by:
o -0.5 0.0 +5.0 -0.5 -1.0  -0.5
.
25 S1 =-1.0 0.0 +1.0 S2= 0.0 0.0 0.0 [15]
& ‘u -
K’I -0.5 0.0 +5.0 0.5 +1.0 +0.5

We immediately see that such a filter cannot be evaluated by
D using the procedure expounded here, for the center element

'“e of both Sl and S2 is O.
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DOUBLE-GATED FILTER

FIGURE 10 -

This figure 1llustrates the working principle of a double-
gated filter. The black and the white disks superimposed
on the target correspond respectively to the center of the
white and gray frames surrounding the target. The white
(black) disk and the white (gray) frame stick together and
as the disk scans the target, the frame samples the back-
ground surrounding the target. For this reason, the disk
or the inner window of a double-gated filter is referred to
as the target gate, and the frame-like window or outer
window as the background gate.
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4.0 PERFORMANCE EVALUATION RESULTS

Figures 11 to 17 display the characteristic curves of the seven
spatial filters defined in the previous chapter. The target-insertion
scenario used to generate these curves is the one defined by [7]. The
upper graphs in the aforementioned figures give the probability of
detection as a function of the intensity of the target (counstant K3 of
[7]), whereas the lower graphs depict the behavior of the probability
of detection in the presence of noise. In the latter case, constant K3

was set to 11 and the noise model used was:
N(O, Nf x I(x, y)) [16]

i.e. additive Gaussian noise with a mean of 0 and a standard deviation
proportional to the intensity of the pixel at spatial coordinate (x,
y). Nf in [16] is the noise factor of Figs. 11 to 17.

From the plots of Figs. 1l to 17, one can extract the two
figures of merit defined in Section 2.4, namely the minimum detectable
target intensity (MDTI) and the maximum tolerable noise factor (MINF).

The values of these figures of merit are gathered in Tables I and II.

TABLE 1

Minimum detectable target intensity

Probability of false alarm
Filter
0.001 0.01 0.1

4-neighbor Laplacian >11.0 8.27 2.81
8-neighbor Laplacilan 6.37 4.23 2.25
5 x 5 Wiener >11.0 8.43 2.82
9 x 9 Wiener >11.0 7.50 3.13
3 x 3 submedian >11.0 7.47 3.52
5 x 5 submedian >11.0 9.15 4.15
double-gated >11.0 9.66 3.70
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3 x 3, 4-NEIGHBOR LAPLACIAN
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FIGURE 11 - The upper graph in this figure represents the probability
of detecting a point target embedded in the cloud back-
ground of Fig. 2 by using a 3 x 3, 4—neighbor Laplacian
filter as a function of the intensity of the target above
the intensity of the background, at the target location.
The lower graph depicts the adverse effect of additive
Gaussian noise on the probability of detecting a point
target whose intensity is 11 units above the background.
The noise in question has a mean of O and a standard
deviation proportional (noise factor) to the intensity of
each pixel within the filter window. Each graph displays
three curves corresponding to the indicated false-alarm
probabilities. -
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- FIGURE 12 - This figure is the counterpart of Fig. 11 for the case of a
) 3 x 3, 8-neighbor Laplacian filter. This filter is the one
5,4 that exhibits the best overall performance for the cloud
X j background considered here.
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N 5 x 5 WIENER FILTER

Detection Prob.
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FIGURE 13 - This figure is the counterpart of Fig. 11 for the case of a
M 5 x 5 Wiener filter. The point-spread function of this

. filter 1s similar to the one of the 3 x 3, 4-neighbor

?j- Laplacian filter. This explains why the above plots are

2 nearly a replica of those of Fig. ll.
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. FIGURE 14 - This figure 1s the counterpart of Fig. 11 for the case of a
O 9 x 9 Wiener filter.
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oy 3 x 3 SUBMEDIAN FILTER

Detection Prob.
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FIGURE 15 - This figure is the counterpart of Fig. 11 for the case of a
V) 3 x 3 submedian filter. This filter is a nonlinear filter,
) whereas the filters of Figs. 11 to 14 are linear.
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%5‘ 5 x 5 SUBMEDIAN FILTER

Detection Prob.

1. 3. 5. 7. 9. 11,

- =— e =0.001

0.01

0.1

.25

Detection Prob.

") ) 0 ~|- “\" R J
0 .025 .05 .075
Noise Factor

e FIGURE 16 — This figure is the counterpart of Fig. 11 for the case of a
’%: 5 x 5 submedian filter. As we can see by comparing the

>~, plots of Figs. 15 and 16, a larger submedian filter does
el not necessarily mean a better probability of detection.
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5 x 5 DOUBLE-GATED FILTER

1.
o
o)
[ &Y
a
c
o
-
+
0
o
+
)
o
1. 3. 5. 7. 9. 11.
Target Intensity
1.
'Q. - - -— =0.001
o
I~ 73 ——e—eee—e-=0.01
a
0.4
c e
S S N
S F < “\“'\“
S a5k N T
v ~ \\"\.-
(@] ~ - _ T ———
0] .025 .05 .075

Noise Factor

FIGURE 17 - This figure is the counterpart of Fig. 11 for the case of a
5 x 5 double-gated filter. This filter, like the submedian
filter, is a nonlinear filter. Although its overall
detection performance is not impressive, it performs better
than most of the other filters at low target intensities
and it is more robust in the presence of noise.
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e TABLE 11
)
ﬁﬂ} Maximum tolerable noise factor

Foi
o Probability of false alarm

’ Filter

. 0.001 0.01 0.1
P
N 4-neighbor Laplacian 0.0 0.013 0.047

oy 8-neighbor Laplacian 0.013 0.017 0.040
et 5 x 5 Wiener 0.0 0.012 | 0.045

' 9 x 9 Wiener 0.0 0.014 0.031
) 3 x 3 submedian 0.0 0.015 0.044

X 5 x 5 submedian 0.0 0.011 0.043

Al double-gated 0.0 0.006 | 0.049

3

o

. The next table (Table II1) contains a few statistical parameters
“i: pertaining to the filtered image, i.e. the mean value, Mf, the standard
fjg deviation, Sf, and the AC power gain, G. The latter is defined as
x}f follows:

e G = 10 log . (sg? / se?) [17]
e

‘ where Sg is the standard deviation of the original, unfiltered image.
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TABLE 111

Filtered-image statistics

Mean Standard AC power
Filter deviation gain
M£) (sf) (6)
4-neighbor Laplacian 0.00 5.74 17.89
8-neighbor Laplacian 0.00 2.30 25.83
5 x 5 Wiener 0.21 4.68 19.66
9 x 9 Wiener 0.01 3.24 22.86
3 x 3 submedian -0.02 3.31 22.67
5 x 5 submedian -0.04 3.88 21.29
double-gated 0.00 0.83 34.69

Finally, for the sake of comparison, the 0.0l probability-of-

false-alarm curves are all plotted on the same graph in Figs. 18 and

19. The very same type of lines 1Is used for the two Laplacian filters

(solid line), the two Wiener filters (long dash followed by two short

dashes), and the two submedian filters (long dash followed by a dot).

The double-gated filter is represented by a dashed line.

From this set of figures and tables, we see that:

a) The filter with the best overall performance for the type of

background considered here is the 3 x 3, 8-neighbor

Laplacian.

b) With the exception of the 3 x 3, 8-neighbor Laplacian

filter, the double-gated filter outperforms all the other

filters at low target intensities (Fig. 18).

¢) The double-gated filter is more robust than all the other

filters, without exception, in the presence of noilse

(Fig. 19).
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g “ CLOUD BACKGROUND

R ( Pf = 0.01 )
» Laplscian
0 i. r - - Wiener
d‘r ———— gubmedian
o
g{, = doudble-gated
. :5 .75
5 o
3 °
A a
C
o .5
¢ -
< +
» O
" v
“ +
M ()
a
‘: .25
i -
!:.
t
)
“
:4 0 ! )
4
! 1. 3. 5. 7. 9. 11.
)
;:, Target Intensity
]
) FIGURE 18 - We have gathered in this figure the detection-performance
f, curves (at a probability of false alarm of 0.01) of the
o seven filters studied in this report. The same type of

o line is used for the two Laplacian filters (solid line),

o the two Wiener filters (combination of long and short

= dashes) and the two submedian filters (dash-dot line). A
dashed line is used to represent the double-gated filter.
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CLOUD BACKGROUND

( Pf = 0.01 )

——— Leplacian
1 . ——emm——eee Wioner

— — e g DB d 18N

- e o double-gated

Detection Prob.

Noise Factor

art of Fig. 18 as concerns the

FIGURE 19 - This figure is the counterp
rs in the presence of additive

behavior of the seven filte
Gaussian noise.
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4-NETGHBOR LAPLAC IAN B 2-HNEISHEOR LRPLACIAN

~ S WIENER FILTER 0 9 < 9 WIENER FILTER

FIGURE 20 - This figure shows the logarithm of the power spectrum of
the four linear filters. For display purposes and to bring
out the differences between the various spectra, the values
of the logarithm between the 0.1 and the 0.9 percentage
points were mapped into a gray scale running from 0 (black)
to 255 (white), and then subjected to a modulo—-64 trans-
formation (i.e. gray levels O to 63 were mapped into O to
255, as well as tiue gray levels in the ranges 64 to 127,
128 to 191, and 192 to 255). This last transformation
produces a display that looks like an interference
pattern.
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t."’;‘;"
Q{Qf d) The Laplacian, Wiener and submedian filters exhibit the same
’ behavior in the presence of noise.
:""'g;
7;l9|.
ﬁig e) For the cloud background considered in this report, the
\t“
%Qg three nonlinear filters (the double-gated filter and the two
I submedian filters) do not do better as a whole than the four
Ag®
:.! linear ones.
o
oy
‘o yial
140
{?; f) The curves of Figs. 11 and 13 are nearly identical. This
)
should come as no surprise given that the point-spread
hﬁ? functions of the relevant filters are quite similar despite
wh
*?ﬁ:‘ the difference in size. In fact, 1f [l2] is rounded to the
;.‘
“:' first decimal digit, we obtain:
:’l::'
i}
o - 0-0 -003 000
)“j'
B -"J -003 +100 -0.3
P )"
4R 0.0 -0.3 0.0
?ﬂ' Figure 20 further confirms the great similarity between the two
Q'Q
"g" filters.
.".' !
he
W
S g) It seems (Figs. 15 and 16) that the performance of a sub-
PO median filter decreases as we increase its size.
! »
4 g
oy
fgf h) 1If the seven filters were to be ranked from best to worst
Y
' according either to the MDTI (Table I) or the MINF (Table
as II1) values for a probability of false alarm of 0.01, one
: f would obtain the following classification:
;‘
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1) 3 x 3, 8-neighbor Laplacian

2) 3 x 3 submedian filter

3) 9 x 9 Wiener filter

4) 3 x 3, 4-neighbor Laplacian
5) 5 x 5 Wiener filter

6) 5 x 5 submedian filter

7) 5 x 5 double-gated filter

i) However, if the same sort of ranking was attempted with the

AC power gain values of Table I1I, the result would be:

1) 5 x 5 double-gated filter
2) 3 x 3, 8-neighbor Laplacian
3) 9 x 9 Wiener filter

4) 3 x 3 submedian filter

5) 5 x 5 submedian filter

6) 5 x 5 Wiener filter

7) 3 x 3, 4-neighbor Laplacian

This is a clear indication that the ratio of the standard devia-
tion of the filtered image to the one of the unfiltered image is not a
general measure of the performance of a spatial filter. It is meaning-

ful only for linear filters.

5.0 CONCLUSION

The primary objective of this report was to formulate a method-
ology for evaluating both linear and nonlinear spatial filters used by
passive IR sensors to discriminate between signals due to target
sources and those arising from background clutter. As mentioned in the
introduction, the proposed methodology applies only to point targets.

A different methodology will have to be devised for spread targets, for
it does not seem possible to generalize the one expounded here in order

to include such targets.
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A number of specific spatial filters cannot be evaluated with
the proposed methodology. These are the ones like the Sobel filter
whose center element of the polnt-spread function is zero. This is
because we assume that the post—filtering processing is deliberately
designed to announce that a detection has occurred if, and only if, the
target coincides with the center element of the filter. Otherwise, the

target is regarded as being absent.

The proposed methodology allows one to quantitatively and
qualitatively evaluate the performance of a particular spatial filter

for a given background. The results obtained will be useful only

insofar as this particular background is typical of those likely to be
encountered by the surveillance system or any other system built around
such a filter. 1In other words, the performance of a spatial filter is
bound to be different for different backgrounds.

The results presented in this report, along with those of a few
more experiments we have carried out with other types of background,
convey the impression that the 3 x 3, 8-neighbor Laplacian filter is a
very effective filter when the imagery is not too noisy, that the
double-gated filter is more robust than the other ones in the presence
of noise, and that the performance of a submedian filter decreases as

one increases its size. However, more experimentation will be needed

to confirm these findings.
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